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A primitive variable unsteady viscous incompressible IVavierrStokes flow simulation in a 
higher aspect ratio (A =depth/width = 2) driven cavity at a higher Reynold’s number 
(Re= 10,000) exhibits dynamical features not apparent in previous studies of stationary 
solutions or at lower Reynolds number or in the more usual unit cavity investigations. The 
initial dynamics, e.g., between t = 0 set and t = 70 set, reveals transient bifurcations between 
states including two, three, and four interacting vortices in an interior separation region. 
Following this, there is an intermediate interval, e.g., between t = 70 set and t = 140 set, 
characterized by a vertical oscillation of the primary vortex related to the general activities of 
the secondary features of the flow. The long time behavior, e.g.. between t = 140 seconds and 
I = 360 seconds, is one of qualitative smoothing of all secondary features except a persistent 
oscillation indicating a Hopf bifurcation. >c 1981 Academx Press. Inc. 

1. INTRODUCTIVE 

In a previous paper [l] we presented a comprehensive study of the unsteady 
flow dynamics of two-dimensional driven cavity flow. Differentiation of flow charac- 
teristics in terms of both the Aspect Ratio A = depth/width and the 
ber Re = l/viscosity were investigated in [l] for A between t an 
between IO -6 and 2000. We also investigated some cavities deeper than A - 4, e.g., 
A = 5 and 6, but quickly found that these more expensive runs revealed rm essential 
new flow features beyond what is seen already at depth A = 2. 

Because deep cavity (here, A = 2) flow dynamics were seen in [Ii ] to be far more 
interesting than those of the more usual unit cavity (A = 1) investigations (see [I ] 
for an account of such recent studies), we decided to simulate the full flow dynamics 
at A = 2 at the higher Reynolds number Re = 10,000. Using a time interval 
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At = 0.001 the flow exhibited an interesting initial transient dynamics, from t = 0 set 
to t = 70 set, not seen before. These results are described in Section 3. After these 
initial transients, it appeared that all qualitative features of flow had established 
themselves. There followed, until about t = 140 set, an interval marked by a vertical 
oscillation in the position of the principal vortex. The flow during this intermediate 
interval is described in Section 4. 

Thereafter, we were tempted at t = 180 set to terminate the simulation, accepting 
that from most indications the flow was converging to a final steady state. Such 
final steady states had been achieved in all of the unsteady flows studied in [ 11. 
However, because there remained a persistent secondary oscillation, qualitatively 
localized mainly to an ongoing interaction between a left wall vortex and a left cor- 
ner vortex, we continued the flow beyond t = 180 set to t = 360 sec. The oscillation, 
which could represent a Hopf bifurcation, remained. This final behavior is described 
in Section 5. 

2. SOME FLOW SIMULATION DETAILS 

We refer to [l] for a full general description of the cavity problem treated and a 
comparative account of a number of recent cavity flow studies and the numerical 
schemes employed. In the present study, attention was focused entirely on the case 
of a cavity of width 1 and depth 2. In this cavity the viscous incompressible 
Navier-Stokes equations 

V,-&-AV+(V.V)V= -VP (2.1) 

v-v=0 (2.2) 

were discretized, following [l], on a uniform 40 x 80 grid using a modified MAC 
(marker and cell) staggered mesh scheme. See [2] for a good account of MAC 
schemes, the related projection and fractional step methods, and boundary value 
considerations. The flow was generated from an impulsive start and continued 
thereafter by a continuously moving top lid. See Fig. 1. 

Briefly, see Cl], the flow is advanced alternately between the velocity Y and the 
pressure P” + ’ by means of the pressure equation 

AP n+l= -div((V”*V)V”) (2.3) 

with boundary condition 

1 
r~+‘P”+~=~n.dV? (2.4) 
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FIG. 1. Driven cavity, aspect ratio A = 2. 

In the velocity advancement there is an intermediate predictor-corrector step, see 
[ I] or I]2], an effect of which is to ensure that each k”+ 1 is discretely incom- 
pressible. 

As mentioned in [l], in preliminary experiments, we found no ~orn~utatio~a~ 
advantages of an implicit method over forward Euler, and hence used the latter for 
advancing the velocity in time. 

Underlying the use of (2.3) and (2.4) are assumptions that the analytic momen- 
tum equation (2.1) possesses solutions (0, p) smooth enough so that one can 

ifferentiate Eq. (2.1), continue it to the boundary, and still retain a consistent 
discretization thereafter. 

For convergence of such computations and accuracy at initial and int 
times it is important [3] that the initial data V(0) be weakly solenoidal. 
this is the case for the driven cavity initial data and discretizations that we 
employed. 

Rather than (2.4) one can actually set aplan = 8 on the boundary and ev~~t~a~~~ 
expect good results. See, for example, [3, Chap. I Sect. 7.11 and R 
where dP"' ‘/an = 0 at each time step and yet +I and v+l co 
upwinding was used, so that the numerical flow nsients could be accura 
portrayed. See Section 6 for comments on stability of the scheme. 

In all figures we have normalized the velocity vectors to provi 
visualization of the qualitative, rather than quantative, features of the flow. 



80 x 160 
t = 5 set 

40 x 80 
f = 60 set 

80 x 160 
t = 9 set 

80 x 160 
t = 21 set 

40 x 80 
t = a4 set 

40 x 80 
t = 120 set 

FIG. 2. Mesh size dependence at Re = 2000. 
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80 x 160 80 x 160 80 x 160 
t = 30 see t = 42 set t = 50 SEC 

FIG. 2-Continued 

To investigate possible mesh-size dependence, prior to the main run at 
Re = 10,000 we compared the 40 x 80 resolution with a finer grid 80 x 160 
resolution at the lower Reynolds number Re = 2000. See Fig. 2. Note that the finer 
grid did not generate a wall vortex until t = 6 set whereas the coarse gr 
wall vortex at t = 4.5 sec. On the other hand once the initial data ha 
throughout the cavity, the finer grid flow features uickly catch up to 
coarse grid. Some small variations occur thereafter. For example, the coarse grid 
fails to detect the beginning small action in the weaker lower left corner of 
grid seen at t = 30 sec. In fact this small left corner vortex on the finer 
appears at t = 32 set, reappears at t = 37 set, then disappears again until t 
when it reappears for good. At t = 60 set the coarse grid has still not portray 
small dynamical feature but does so at t = 84 sec. The “final” states of both 

ntially the same, at t = 60 set for the finer grid, t = 120 sec. for the coarse grid. 
or later reference let us point out one other interesting feature of the flow at 

2000. At this Reynolds number, the wall eddy develops after the principal vor- 
tex but before either corner vortex. Thereafter it merges, almost sirn~lta~e~~sI~~ 
with the two corner vortices to generate the secondary pr 
This will not be the case at the higher Reynolds number 

Finally, the boundary layer thickness is 

up to a constant C. For flow impinging on a flat plate, for example, the constant C 
takes a value 4.99. If we direct principal interest to the flow down the left si 
cavity, regarded as basically an incoming vertical downward (with U(0) - 1) 
Iaminar flow instigated by the inertia imposed downward by the lid moving along 
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t = 12 set t = 13 set t = 14 set 

FIG. 3. Wall-corner dynamics at Re = 2000. 

the top, at the left midwall (x- 1) at Re = 10,000 we would expect a boundary 
layer thickness of about 6 - 5 (10,000) - “* - 0.05. Moreover, the much smaller flow 
velocities at left midwall create an effective local Reynolds number significantly 
smaller than 10,000. Thus we are able to resolve and capture the wall vortex 
dynamics reported herein. 

3. TRANSIENT INITIAL DYNAMICS 

In the remainder of the paper we consider only the flow simulation at aspect 
ratio A = 2 at the higher Reynolds number Re = 10,000. 

The flow begins, see Fig. 4, much like all of those of [l] except that a small vor- 
tex splitting is already seen near the top at t = 2 sec. We regard this, which was also 
seen at Re = 2000, as a very short-lived transient off the principal vortex evolution. 
The eye of the principal vortex then descends’the left (downstream) cavity wall 
until the formation of a wall eddy (approximately at depth 1) at t = 10 set at which 
time it moves into the core of the cavity. This movement of the primary vortex is in 
sharp contrast to the analogous evolution observed at the lower Reynolds numbers 
Re < 2000 wherein the eye entered the core upon formation. 

The wall vortex is well formed at t = 18 set but then starts to breakup at 
t = 22 set prior to the development of either of the first lower corner vortices. 
Quickly the wall vortex splits, t = 25 set, and at t = 28 set we have a further split 
into three vortices in the interior separation region. At 34 set one can discern, in 
fact, 4 subvortices. 

Also at t = 34 set, a second wall eddy formation can be observed on the right 
(upstream) wall of the cavity. This eddy will eventually become the upstream, cor- 
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ner-lid recirculation eddy. Note that this eddy forms at a time when the eye of t 
primary vortex is deepest. Thereafter the transient features of this eddy are its ten- 
dencies to separate or partially dissolve in accommodation with the primary vortex 
whose eye displays a (sometimes intense) oscillatory, vertical motion. 

Concurrent to the formation of the lid-eddy is that of the secondary core vortex. 
This principal second region of recirculation has its origin in the left wall-e 
feature not characteristic of lower Reynolds number flows. 

As mentioned in the previous section, see Fig. 3, at Reynolds number 
the secondary core vortex resulted from the fusion inside the i 
of the two corner eddies with (when it exists) the left wall-eddy. 
vortex detaches from the left wall-eddy (t = 25 set), moves quickly 
of the cavity to the right wall, and then back again into the interior before sto 
at t = 60 sec. As in the case with lower Reynolds numbers the 
vortex is displaced (the amount depending on the Reynolds 
right cavity wall with respect to the eye of the primary vortex. 

After the secondary vortex hits the right wall at t M 40 set, a lower right corner- 
eddy forms, t = 43 sec. Then a left corner-eddy develops subsequent to the secon- 
dary vortex’s retreat into the cavity’s interior at t z 58. At this point (e.g.9 t = 5 
one can count 8 recirculation regions in the flow: two principal vortices, two vor- 
tices near the left midwall, the two lower corner-eddies, an 
with its tertiary subeddy. 

As the upper-left corner begins an attempted recirculation lion at t=40 set 
one can discern a simultaneous disintegration of the upper-ri carrier flow into 
three small upper wall-eddies. However, this transient, presumably due to au 
“upwelling” action of the flow, soon disappears, t = 65 set, as does the residual 
separation region interaction. 

The lower left corner-eddy is now larger than the lower right corner-eddy and 
will remain so. However, unlike the lower right corner-eddy, it is unsteady, and will 
continue to remain so due in part to the presence, in close proximity, of a wall 
eddy. 

4. INTERMEDIATE DYNAMICS 

After the onset dynamics in which the basic energy of the system is 
throughout the cavity, the flow begins what we may roughly describe as a 
smoothing action. See Fig. 5. Although some qualitative tertiary action remains in 
the separation region near the left wall and i.n the upper-right corner, eventually 
most of it disappears. Note, however, the resemblance of the Row at t = 11 
that at 100 sec. The tertiary separation eddy near the left wall is seen onl 
after t = 140 sec. The flow pattern seen at t = 140 set socm establishes itself as a 
basic one. 

The flow during this intermediate interval t = 70 set to i = 140 set is 
by a vertical oscillation of the eye of the principal vortex. As seen in 
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52 set 

67 set 

FIG. 4-Continued. 
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100 set 

130 set 

80 set 

110 set 

140 set 

120 set 

180 set 

FIG. 5. Smoothing dynamics at Re = 10,000. 
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299 se= 300 set 301 set 

FIG. 6. Eventual smoothed flow at Re = 10,000 

movement is most intense between t = 70 set and t = 120 sec. After t = 940 see the 
location of the eye steadies. 

The flow then continued to smooth the large scale vortex structures. See Fig. 6. 
Note the separation into upper- and lower-driven subcavities and the lack of 
significant change in secondary features except along the lower-left wall. 

5. FINAL DYNAMICS 

Although some smoothing continues from t = 300 set to t = 368 set (when we 
stopped the simulation), it is overshadowed by the persistent oscillation along t 
Bower-left wall. While such oscillations have been seen in some thermally de~~~~e~t 
flow simulations, we have not seen them in basic cavity flows. Nor did t 
a unit cavity unsteady simulation at Re = 10,000 [4]. 

Figure 7 shows the patterns of this oscillation. In addition to the 
oscillation on the left, we note also very small tertiary ~onstatio~ar~ti~s at three 
points along the right wall: (i) just below the upper-right corner, where ear 
was a definite tertiary eddy; (ii) just below the right midwall, where 
separates into the upper and lower regions; (iii) at the top of the lower rig 
eddy. Whether or not these represent minor numerical or fluid instabilities or very 
small tertiary periodic final solutions are questions, in our opinion, secondary to 
whether the main oscillation along the lower-left wall represents a final periodic 
solution. 



342 set 

345 set 

346 set 

351 set 

354 set 

355 set 

FIG. 7. Final oscillation at Re = 10,000. 

359 set 

360 set 
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6. FURTHER COMMENTS AND Co~c~usnows 

results indicate a Hopf bifurcation, for flow in a depth 2 cavity, at 
cri Reynolds number Re between 2000 and 10,000. One should ~isti~g~~s 
Hopf bifurcation of the discretized equations from the cases of the ~~~ti~~5~s 
equations and the actual physics. Moreover, the aspect ratio A = de~th/w~d~b enters 
as a second bifurcation parameter of considerable importance. That is, holding 

e = 10,000 as reported herein, there is indicated a opf bifurcation at some critical 
ween 1 and 2. 
e to the multi-directional nature of the flow dynamics, any accurate incor- 

poration of upwinding would result in a computational quagmire. On the &hen 
band, in employing a forward Euler-MAC scheme, care is needed in cboo . 
discrete steps 6t, 6x, and 6y to assure both stable time integration and 
spatial resolution of the dynamics under consideration. e required that the ratio 
4161) v,l(&)” not exceed a critical value K(v), where we have taken 6x = 6~. 
the equations are nonlinear, K(v) must in general be determined experime 
simulation runs on a coarse grid. For example, the value v = 0.01 yielded 
while v = 0.0025 yielded K(v) ~0.36. Bur experiments with K(v) i 
K(v) 4 0 as 1~ 4 0, in a non-linear way. Instability, when it occurr 
itself first in the downstream left lid-corner, resulting quickly in a subs 
solution of the primary vortex accompanied by a rapid buildup of large pressure 
gradients. On the other hand, a well-established primary vortex appeared to 

antee stability thereafter. 
roper resolution of boundary layer effects at high Reynolds number requires in 

general tine discretizations. However, as mentioned at the end of Section 2, the flow 
velocities near the midwall and corner vortex structures are considerably smailer 
than the driving velocity. For the Re = l/v = 10,000 dynamics presented here, at the 
final time t = 360 set, the effective local Reynold’s number in the Left-midwall region 
is about 

q?lL < (O.W~- looo, (Re) ---- effective v =(104) 

Examination of the velocity matrices during the whole time 
corresponding or smaller values in the neighborhoods of all second 
tures. In particular, the transient wall vortex dynamics, i.e., 
movement on the left wall, would appear to be accurately resolved. 
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